A Harnack Inequality for Homogeneous Graphs and Subgraphs
نویسندگان
چکیده
We prove a Harnack inequality for eigenfunctions of certain homogeneous graphs and subgraphs which we call strongly convex. This inequality can be used to derive a lower bound for the (nontrivial) Neumann eigenvalues by l/(8kD) where k is the maximum degree and D denotes the diameter of the graph.
منابع مشابه
A Harnack inequality for Dirichlet eigenvalues
We prove a Harnack inequality for Dirichlet eigenfunctions of abelian homogeneous graphs and their convex subgraphs. We derive lower bounds for Dirichlet eigenvalues using the Harnack inequality. We also consider a randomization problem in connection with combinatorial games using Dirichlet eigenvalues.
متن کاملGaussian bounds and parabolic Harnack inequality on locally irregular graphs
A well known theorem of Delmotte is that Gaussian bounds, parabolic Harnack inequality, and the combination of volume doubling and Poincaré inequality are equivalent for graphs. In this paper we consider graphs for which these conditions hold, but only for sufficiently large balls, and prove a similar equivalence. 2000 MR subject classification: 60K37, 58J35
متن کاملHarnack inequalities for graphs with non-negative Ricci curvature
a r t i c l e i n f o a b s t r a c t Keywords: The Laplace operator for graphs The Harnack inequalities Eigenvalues Diameter We establish a Harnack inequality for finite connected graphs with non-negative Ricci curvature. As a consequence, we derive an eigenvalue lower bound, extending previous results for Ricci flat graphs.
متن کاملHarnack inequalities and sub-Gaussian estimates for random walks
We show that a-parabolic Harnack inequality for random walks on graphs is equivalent, on one hand, to so called-Gaussian estimates for the transition probability and, on the other hand, to the conjunction of the elliptic Harnack inequality, the doubling volume property, and the fact that the mean exit time in any ball of radius R is of the order R. The latter condition can be replaced by a cert...
متن کاملSome remarks on the elliptic Harnack inequality
In this note we give three short results concerning the elliptic Harnack inequality (EHI), in the context of random walks on graphs. The first is that the EHI implies polynomial growth of the number of points in balls, and the second that the EHI is equivalent to an annulus type Harnack inequality for Green’s functions. The third result uses the lamplighter group to give a counterexample concer...
متن کامل